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Abstract.

We use the method of Whitney interpolation to construct, for any real or complex
projective algebraic variety, a stratified submersive family of self-maps that yields
stratified general position and transversality theorems for semialgebraic chains.

This theorem can be used to define an intersection pairing for real intersection
homology, an analog of intersection homology for real algebraic varieties.
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General position. Historical remarks.

H. Poincaré 1890’ and S. Lefschetz 1926 used general position and general
transversality to define the intersection product of two cycles on a manifold.
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Stratified general position.

Stratified general position was used by M. Goresky and R. MacPherson
(1980) to define the intersection pairing on Intersection Cohomology of
complex algebraic varieties.

Adam Parusiński (Nice) STRATIFIED GENERAL POSITION Trotman 2021 4 / 16

30
wt e ed Y

of E even ifX
dim Ct dim Ii Colin X



McCrory’s Theorem (1977).

Let X be a stratified polyhedron and A and B be subpolyhedra.
Then 9 a PL-isotopy of X ,

 : I ⇥ X ! X ,

 0(x) =  (0, x) = x , s.t. A and B 0 =  1(B) are in general position,
i.e. for every stratum S

dimA \ B 0 \ S  dimA \ S + dimB 0 \ S � dim S .
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Transversality Lemma of Goresky.
M. Goresky used startified transversality to construct geometric homology
and cohomology theories, for stratified spaces, in which cycles and cocycles
are represented by substratified spaces.

Theorem (M. Goresky, 1981)
Let X be a Whitney stratified subset of a manifold and let V a Whitney
substratified subset satisfying ⇡-fibre condition. Then, each geometric cocycle Y
is cobordant to a geometric cocycle Y 0 such that

Y 0 is transverse to V.
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Murolo, du Plessis and Trotman’s Theorem.

Theorem (MdPT 2003 & 2005)
Let X be an abstract stratified set, or a (w) regular stratified subspace of a
manifold, and let V a substratified set. Then, for each substratified set W of X
there is an isotopy of X deforming W to W 0 such that

W 0 is transverse to V.
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Submersive family of diffeomorphisms.

Definition
Let P and M be smooth manifolds and let

 : P ⇥M ! M

be a smooth mapping. We say  is a submersive family of diffeomorphisms if, for
every (t, x) 2 P ⇥M, the differential

Dt : TtP ! T (t,x)M is surjective.

Then, by Sard’s Theorem, for any submanifolds Z1,Z2 of M the set

{t 2 P ;  t(Z1) is transverse to Z2 }

is dense in M.
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Open problems.
("tameness" of intersection near boundary of a stratum)
Even if W 0 \ S and V \ S are of complementary dimension and transverse in
S it is not clear that W 0 \ V \ S if finite.

(preservation of regularity after deformation)
If the given stratification of W is (Whitney, (w), (a), Bekka, etc.) regular.
Does the stratification of W 0 inherit the same regularity?
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Stratified submersive family of diffeomorphisms.

For a stratified set X =
F

Si we say that

 : P ⇥ X ! X

is a stratified submersive family of diffeomorphisms if for every stratum Sj ,
 (P ⇥ Sj) ⇢ Sj and the restriction  |Sj

: P ⇥ Sj ! Sj is a submersive family of
diffeomorphisms.
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Algebraic stratified general position.

Theorem (C. McCrory, A.P., L. Pǎunescu, J. Alg. Geometry, 2019)
Let V = {Vi} be a finite family of algebraic subsets of Pn(K). There exists an
algebraic stratification S = {Sj} of Pn compatible with each Vi and a
semialgebraic stratified arc-wise analytic submersive family of diffeomorphisms

 : U ⇥ Pn ! Pn,

where U is a neighborhood of the origin in Kn+1, and  (0, x) = x for all x 2 Pn.

In particular, �(t, x) = (t, (t, x)) : U ⇥ Pn ! U ⇥ Pn is an arc-wise analytic
trivialization

� is semi-algebraic and stratified real analytic isomorphism.
� and ��1 are real analytic on real analytic arcs.
� is K-analytic in t.
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Corollary

Let Z and W be semialgebraic subsets of Pn. There is an open dense
semialgebraic subset U 0 of U such that, for all t 2 U 0 and all strata S 2 S,

dim(Z \ t(W ) \ S)  dim(Z \ S) + dim(W \ S)� dim S .

If (Z ,A) and (W ,B) are stratified semialgebraic subsets of (Pn,S) then there is
an open dense semialgebraic subset U 0 of U such that, for all t 2 U 0, and all
strata S 2 S,

(Z \ S ,A) t ( t(W ) \ S , t(B)) in S .
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Arc-wise analytic equisingularity.
Simplifying assumptions:
- F (t, x) homogeneous polynomial in x 2 Kn+1, analytic in parameter t 2 U;
- system of coordinates x (linearly) sufficiently generic;
- the family of zero sets of F (t, x), t ! Vt Zariski equisingular.

Recipe for constructing arcwise analytic homeomorphism trivializing t ! Vt

�(t, x) : (U, 0)⇥Kn+1 ! (U, 0)⇥Kn+1.

Let Fn+1(t, x) := F (t, x),
Define recursively Fj(t, x1, . . . , xj) = �xj+1

(Fj+1)red .

Then construct
�j(t, x1, . . . , xj) : U ⇥Kj ! U ⇥Kj

by induction on j .
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Some details.
Let

Fn+1(t, x) =
Y

i

(xn+1 � ⇠i (t, x
0))

Given �n(t, x 0) = (t, n(t, x 0)).
Construct �n+1(t, x) = (t, n+1(t, x)) = (t, n(t, x 0), n+1(t, x)).

1 Lift �n(t, x 0) to the zero set of Fn+1(t, x)

 n+1(t, x
0, ⇠i (0, x 0)) = ⇠i (�n(t, x

0)).

2 Extend to arbitrary (t, x 0, xn+1)

 n+1(t, x
0, xn) =  (⇠(0, x 0), ⇠(�n(t, x

0)), xn),

where ⇠ = (⇠1, . . . , ⇠deg Fn+1
),  is a Whitney Interpolation function. In

particular  is real rational function given by a precise formula.
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Main idea.
Let F (x) be a homogeneous polynomial (not depending) on t 2 U. Then the
family of its zero sets t ! Vt is trivial and the identity map

id : U ⇥Kn+1 ! U ⇥Kn+1

trivializes it.

Construct, recursively on j , a non-trivial trivialization of this trivial family

�j(t1, . . . , tj , x1, . . . , xj) : Uj ⇥Kj ! Uj ⇥Kj ,

by introducing, at each step, to the precise formula for �j a new parameter tj .
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Perturbed formula for Whitney's Interpolation

iii iii
Erica.z pi d

where y is the perturbation parameter

3 Fifi 0 off 2 0 or z ai



Many happy returns, David!
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