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Abstract.

We use the method of Whitney interpolation to construct, for any real or complex
projective algebraic variety, a stratified submersive family of self-maps that yields
stratified general position and transversality theorems for semialgebraic chains.

This theorem can be used to define an intersection pairing for real intersection
homology, an analog of intersection homology for real algebraic varieties.
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General position. Historical remarks.

@ H. Poincaré 1890" and S. Lefschetz 1926 used general position and general
transversality to define the intersection product of two cycles on a manifold.

C

+wo ua,[,Q_s not ¢ SQMUMJ) liro transvevse CJDRLOS
P silcon

dom CoD > dim €+ alcomn D= olam X

Adam Parusinski (Nice) STRATIFIED GENERAL POSITION Trotman 2021 3/16



Stratified general position.

@ Stratified general position was used by M. Goresky and R. MacPherson
(1980) to define the intersection pairing on Intersection Cohomology of
complex algebraic varieties.
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McCrory's Theorem (1977).

Let X be a stratified polyhedron and A and B be subpolyhedra.
Then 3 a PL-isotopy of X,

Wl x X = X,

Wo(x) = W(0,x) = x, s.t. Aand B’ = Wy(B) are in general position,
i.e. for every stratum S

dmANB NS <dmANS+dmB NS —-dmS.
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Transversality Lemma of Goresky.

@ M. Goresky used startified transversality to construct geometric homology

and cohomology theories, for stratified spaces, in which cycles and cocycles
are represented by substratified spaces.

Theorem (M. Goresky, 1981)

Let X be a Whitney stratified subset of a manifold and let YV a Whitney

substratified subset satisfying m-fibre condition. Then, each geometric cocycle )
is cobordant to a geometric cocycle ' such that

Y’ is transverse to V.

Y can be woveal
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Murolo, du Plessis and Trotman's Theorem.

Theorem (MdPT 2003 & 2005)

Let X be an abstract stratified set, or a (w) regular stratified subspace of a
manifold, and let V a substratified set. Then, for each substratified set VW of X
there is an isotopy of X deforming VW to W' such that

W' is transverse to V.
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Submersive family of diffeomorphisms.

Definition
Let P and M be smooth manifolds and let

V:PxM-—>M

be a smooth mapping. We say WV is a submersive family of diffeomorphisms if, for
every (t,x) € P x M, the differential

DV 2 TiP — Ty(t,x)M is surjective.
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@ Then, by Sard’s Theorem, for any submanifolds Z;, Z> of M the set

{t € P; V,(Z;1) is transverse to Z, }

is dense in M.
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Open problems.

o ("tameness" of intersection near boundary of a stratum)
Even if W/ NS and VN S are of complementary dimension and transverse in
S it is not clear that W/ NV N S if finite.
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@ (preservation of regularity after deformation)
If the given stratification of W is (Whitney, (w), (a), Bekka, etc.) regular.
Does the stratification of YW’ inherit the same regularity?
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Stratified submersive family of diffeomorphisms.

For a stratified set X = | | S; we say that

V:PxX—=X

is a stratified submersive family of diffeomorphisms if for every stratum S;,
V(P x §;) C §; and the restriction W|s : P x §; — §; is a submersive family of

diffeomorphisms.
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Algebraic stratified general position.

Theorem (C. McCrory, A.P., L. Paunescu, J. Alg. Geometry, 2019)

Let V = {V;} be a finite family of algebraic subsets of P"(K). There exists an
algebraic stratification S = {S;} of P" compatible with each V; and a
semialgebraic stratified arc-wise analytic submersive family of diffeomorphisms

V:UxP"— P

where U is a neighborhood of the origin in K™, and W(0, x) = x for all x € P".

v

In particular, ®(t,x) = (t,V(t,x)) : U x P" — U x P" is an arc-wise analytic
trivialization

@ & is semi-algebraic and stratified real analytic isomorphism.

@ ® and ®~! are real analytic on real analytic arcs.

@ & is K-analytic in t.
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Corollary

Let Z and W be semialgebraic subsets of P". There is an open dense
semialgebraic subset U’ of U such that, for all t € U" and all strata S € S,

dim(Z NV (W)NS) < dim(Z N S) +dim(W N S) — dim S.

If (Z,A) and (W, B) are stratified semialgebraic subsets of (P",S) then there is
an open dense semialgebraic subset U’ of U such that, for all t € U’, and all

strata S € S,
(ZNS, A)h (V(W)N S,V (B)) inS.
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Arc-wise analytic equisingularity.

Simplifying assumptions:

- F(t,x) homogeneous polynomial in x € K""1, analytic in parameter t € U;
- system of coordinates x (linearly) sufficiently generic;

- the family of zero sets of F(t,x), t — V; Zariski equisingular.

Recipe for constructing arcwise analytic homeomorphism trivializing t — V4

®(t,x) : (U,0) x K" — (U,0) x K",

o Let Foi1(t,x) := F(t,x),
Define recursively Fi(t,x1,...,X;) = Ay, (Fi41)red-

@ Then construct _ _
®i(t,xy,...,x): UxK — UxK

by induction on .
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Some details.

Let

Fn—l—l H(Xn—H gl(t X ))

L
x -(Ol’t“")v‘/\) : ?L‘ fue rooks "2 E:v\

Given ®,(t, x") = (t, V,(t,x")).
Construct (D,H_l(t,X) — (t? \IJ,,+1(t,X)) — (t7 Wn(t,x’),¢n+1(t,x)).

<y

Q Lift ¢,(t,x’) to the zero set of F,y1(t,x)

wn-l-l(tv Xla &(O’ X/)) — gi(q)n(tv X/))'

@ Extend to arbitrary (t, x’, x,11)

77bn—F1(t-> Xl? Xn) — ¢(5(07 X/)a g(q)n(t? Xl))? Xn)?

where & = (&1,...,8deg Frin)r ¥ is @ Whitney Interpolation function. In
particular v is real rational function given by a precise formula.
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Main idea.

Let F(x) be a homogeneous polynomial (not depending) on t € U. Then the
family of its zero sets t — V4 is trivial and the identity map

id: Ux K & U x K

trivializes it.

Construct, recursively on j, a non-trivial trivialization of this trivial family
q)j(tl,...,tj,Xl,...,)g) ) UJ x K — Uj x K,

by introducing, at each step, to the precise formula for ®; a new parameter t;.
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Many happy returns, David!
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