On the multiplicities of families of non-isolated hypersurface singularities

Maria Aparecida Soares Ruas (ICMC-USP)

Singularity theory and regular stratifications on the occasion of David Trotman's retirement

Marseille, September 29, 2021

Maria Aparecida Soares Ruas On the multiplicities of families of non-isol

э

<ロ> <回> <回> <回> < 回</p>

The multiplicity of a reduced analytic hypersurface singularity in \mathbb{C}^n depends only on its embedded topological type?

2/32

The multiplicity of a reduced analytic hypersurface singularity in \mathbb{C}^n depends only on its embedded topological type?

One can also ask similar question for families:

2/32

< ロ > < 同 > < 回 > < 回 > < 回 > <

The multiplicity of a reduced analytic hypersurface singularity in \mathbb{C}^n depends only on its embedded topological type?

One can also ask similar question for families:

If $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ is a reduced germ of holomorphic function and f_t is a topologically *V*-constant deformation of it, then is it true that f_t is equimultiple?

2/32

(日)

The multiplicity of a reduced analytic hypersurface singularity in \mathbb{C}^n depends only on its embedded topological type?

One can also ask similar question for families:

If $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ is a reduced germ of holomorphic function and f_t is a topologically *V*-constant deformation of it, then is it true that f_t is equimultiple?

 f_t topologically *V*-constant means that the family of hypersurfaces $V(f_t) = f_t^{-1}(0)$ is topologically trivial.

(日)

 Deformations with constant Lê numbers and multiplicity of nonisolated hypersurface singularities, Christophe Eyral and M.A.S.Ruas, 2015.

3/32

イロト イポト イラト イラト

- Deformations with constant Lê numbers and multiplicity of nonisolated hypersurface singularities, Christophe Eyral and M.A.S.Ruas, 2015.
- On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities, Christophe Eyral and M.A.S.Ruas, 2019.

3/32

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Deformations with constant Lê numbers and multiplicity of nonisolated hypersurface singularities, Christophe Eyral and M.A.S.Ruas, 2015.
- On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities, Christophe Eyral and M.A.S.Ruas, 2019.
- Whitney equisingularity of families of surfaces in C³, Otoniel Nogueira da Silva and M.A.S.Ruas, 2019.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Deformations with constant Lê numbers and multiplicity of nonisolated hypersurface singularities, Christophe Eyral and M.A.S.Ruas, 2015.
- On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities, Christophe Eyral and M.A.S.Ruas, 2019.
- Whitney equisingularity of families of surfaces in C³, Otoniel Nogueira da Silva and M.A.S.Ruas, 2019.
- Equimultiplicity of families of map germs from C² to C³, Otoniel Nogueira da Silva, 2020.

(4) (E) (b)

• □ ▶ • □ ▶ • □ ▶

Let $B \subset \mathbb{C}^n$ and $D \subset \mathbb{C}$ be open balls around the origin, $z := (z_1, \ldots, z_n)$ linear coordinates for \mathbb{C}^n and

 $f: (B \times D, \{0\} \times D) \rightarrow (\mathbb{C}, 0), \ (z, t) \mapsto f_t(z) := f(z, t),$

a holomorphic function.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let $B \subset \mathbb{C}^n$ and $D \subset \mathbb{C}$ be open balls around the origin, $z := (z_1, \ldots, z_n)$ linear coordinates for \mathbb{C}^n and

 $f: (B \times D, \{0\} \times D) \rightarrow (\mathbb{C}, 0), \ (z, t) \mapsto f_t(z) := f(z, t),$

a holomorphic function.

• f_t is reduced, $\forall t \in D$

4/32

Let $B \subset \mathbb{C}^n$ and $D \subset \mathbb{C}$ be open balls around the origin, $z := (z_1, \ldots, z_n)$ linear coordinates for \mathbb{C}^n and

$$f: (B \times D, \{0\} \times D) \rightarrow (\mathbb{C}, 0), \ (z, t) \mapsto f_t(z) := f(z, t),$$

a holomorphic function.

- f_t is reduced, $\forall t \in D$
- $m_0(f_t)$: multiplicity of $V(f_t) := f_t^{-1}(0)$ at $0 \in \mathbb{C}^n$

Let $B \subset \mathbb{C}^n$ and $D \subset \mathbb{C}$ be open balls around the origin, $z := (z_1, \ldots, z_n)$ linear coordinates for \mathbb{C}^n and

$$f: (B \times D, \{0\} \times D) \rightarrow (\mathbb{C}, 0), \ (z, t) \mapsto f_t(z) := f(z, t),$$

a holomorphic function.

- f_t is reduced, $\forall t \in D$
- $m_0(f_t)$: multiplicity of $V(f_t) := f_t^{-1}(0)$ at $0 \in \mathbb{C}^n$
- *m*₀(*f*_t) = *ord*(*f*_t) at 0, where *ord*(*f*_t) is the lowest degree in the power series expansion of *f*_t at 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

f_t is *topologically V-constant* (or *V*(*f_t*) is topologically trivial) if for all sufficienty small *t*, there are neighbourhoods *U*₀, *U_t* ⊂ *B*, around the origin, and homeomorphism φ_t : (*U_t*, 0) → (*U*₀, 0) such that

$$\phi_t(V(f_t) \cap U_t) = V(f_0) \cap U_0$$

(4) (E) (b)

f_t is *topologically V-constant* (or *V*(*f_t*) is topologically trivial) if for all sufficienty small *t*, there are neighbourhoods *U*₀, *U_t* ⊂ *B*, around the origin, and homeomorphism φ_t : (*U_t*, 0) → (*U*₀, 0) such that

$$\phi_t(V(f_t)\cap U_t)=V(f_0)\cap U_0$$

• f_t is equimultiple if $m_0(f_t) = m_0(f_0)$ for all t sufficiently small.

f_t is *topologically V-constant* (or *V*(*f_t*) is topologically trivial) if for all sufficienty small *t*, there are neighbourhoods *U*₀, *U_t* ⊂ *B*, around the origin, and homeomorphism φ_t : (*U_t*, 0) → (*U*₀, 0) such that

$$\phi_t(V(f_t) \cap U_t) = V(f_0) \cap U_0$$

• f_t is equimultiple if $m_0(f_t) = m_0(f_0)$ for all t sufficiently small.

Conjecture 1: If the family f_t is topologically *V*-constant, then it is equimultiple.

5/32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hypersurfaces with isolated singularity

If $V(f_t)$ is a family with isolated singularity at the origin, by Lê-Ramanujam Theorem, provided that $n \neq 3$, it follows that Zariski multiplicity conjecture is equivalent to the following conjecture by Teissier:

6/32

Hypersurfaces with isolated singularity

If $V(f_t)$ is a family with isolated singularity at the origin, by Lê-Ramanujam Theorem, provided that $n \neq 3$, it follows that Zariski multiplicity conjecture is equivalent to the following conjecture by Teissier:

Conjecture 2 (Teissier): If $\mu(f_t)$ is constant, then f_t is equimultiple.

Hypersurfaces with isolated singularity

If $V(f_t)$ is a family with isolated singularity at the origin, by Lê-Ramanujam Theorem, provided that $n \neq 3$, it follows that Zariski multiplicity conjecture is equivalent to the following conjecture by Teissier:

Conjecture 2 (Teissier): If $\mu(f_t)$ is constant, then f_t is equimultiple.

Theorem A: (G-M. Greuel (1986); C. Plénat and D. Trotman (2013) If $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z) + ... + t^rg_r(z) + ...$ is an analytic one parameter family of isolated hypersurface singularities with constant Milnor number at z = 0, and $m_0(f_0) = m$, then

 $m_0(g_1) \ge m, \ m_0(g_2) \ge m-1, \ \ldots, \ m_0(g_r) \ge m-r+1.$

Theorem A: (G-M. Greuel (1986); C. Plénat and D. Trotman (2013) If $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z) + ... + t^rg_r(z) + ...$ is an analytic one parameter family of isolated hypersurface singularities with constant Milnor number at z = 0, and $m_0(f_0) = m$, then

 $m_0(g_1) \ge m, \ m_0(g_2) \ge m-1, \ \ldots, \ m_0(g_r) \ge m-r+1.$

Theorem B: (G-M. Greuel (1986); O'Shea (1987))

Let f_0 be a quasihomogeneous polynomial with isolated singularities and f_t a μ -constant deformation of f_0 . Then $m_0(f_t) = m_0(f_0)$. **Theorem A: (G-M. Greuel (1986); C. Plénat and D. Trotman (2013)** If $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z) + ... + t^rg_r(z) + ...$ is an analytic one parameter family of isolated hypersurface singularities with constant Milnor number at z = 0, and $m_0(f_0) = m$, then

 $m_0(g_1) \ge m, \ m_0(g_2) \ge m-1, \ \ldots, \ m_0(g_r) \ge m-r+1.$

Theorem B: (G-M. Greuel (1986); O'Shea (1987))

Let f_0 be a quasihomogeneous polynomial with isolated singularities and f_t a μ -constant deformation of f_0 . Then $m_0(f_t) = m_0(f_0)$.

Theorem C: (Plénat-Trotman(2013))

Let $f(z, t) = f_0(z) + tg(z) + t^2h(z)$ be a μ -constant family. If the singular set of the tangent cone of $\{f_0 = 0\}$ is not contained in the tangent cone of $\{h = 0\}$, then the multiplicity $m_0(f_t)$ is constant.

 $F: (\mathbb{C}^n \times \mathbb{C}, 0) \to (\mathbb{C}, 0), \ F_0(z) = f(z), \ \mu(F_t) < \infty.$ The following

statements are equivalent.

(1) *F* is a μ -constant deformation of *f*.

 $F : (\mathbb{C}^n \times \mathbb{C}, 0) \to (\mathbb{C}, 0), \ F_0(z) = f(z), \ \mu(F_t) < \infty.$ The following statements are equivalent.

(1) *F* is a μ -constant deformation of *f*.

(2) For every holomorphic curve $\gamma : (\mathbb{C}, 0) \to (\mathbb{C}^n \times \mathbb{C}, 0)$

$$\operatorname{ord}(\frac{\partial F}{\partial t} \circ \gamma) > \operatorname{inf} \{\operatorname{ord}(\frac{\partial F}{\partial z_i} \circ \gamma) \mid i = 1, \dots, n\},\$$

 $F : (\mathbb{C}^n \times \mathbb{C}, 0) \to (\mathbb{C}, 0), \ F_0(z) = f(z), \ \mu(F_t) < \infty.$ The following statements are equivalent.

(1) *F* is a μ -constant deformation of *f*.

(2) For every holomorphic curve $\gamma : (\mathbb{C}, 0) \to (\mathbb{C}^n \times \mathbb{C}, 0)$

$$\operatorname{ord}(\frac{\partial F}{\partial t} \circ \gamma) > \inf\{\operatorname{ord}(\frac{\partial F}{\partial z_i} \circ \gamma) \mid i = 1, \dots, n\},\$$

(3) $\frac{\partial F}{\partial t} \in \overline{\mathcal{J}_F}$, ($\mathcal{J}_F = \langle \frac{\partial F}{\partial z_1}, \dots, \frac{\partial F}{\partial z_n} \rangle$ is the Jacobean ideal in \mathcal{O}_{n+1}).

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $F : (\mathbb{C}^n \times \mathbb{C}, 0) \to (\mathbb{C}, 0), \ F_0(z) = f(z), \ \mu(F_t) < \infty.$ The following statements are equivalent.

(1) *F* is a μ -constant deformation of *f*.

(2) For every holomorphic curve $\gamma : (\mathbb{C}, 0) \to (\mathbb{C}^n \times \mathbb{C}, 0)$

$$\operatorname{ord}(\frac{\partial F}{\partial t} \circ \gamma) > \operatorname{inf}\{\operatorname{ord}(\frac{\partial F}{\partial z_i} \circ \gamma) \mid i = 1, \dots, n\},\$$

(3) $\frac{\partial F}{\partial t} \in \overline{\mathcal{J}_F}$, ($\mathcal{J}_F = \langle \frac{\partial F}{\partial z_1}, \dots, \frac{\partial F}{\partial z_n} \rangle$ is the Jacobean ideal in \mathcal{O}_{n+1}). (4) The polar curve of *F* with respect to $\{t = 0\}$ does not split i.e.

$$\Gamma_f = \{(z,t) \in \mathbb{C}^n \times \mathbb{C} \mid \frac{\partial F}{\partial z_i}(z,t) = 0, i = 1..., n\} = \{0\} \times \mathbb{C} \text{ near } (0,0).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Question: Do these results hold for families of non-isolated singularities?

<ロト < 同ト < ヨト < ヨト

Question: Do these results hold for families of non-isolated singularities?

• Σf_t : critical locus of f_t , $dim_0 \Sigma f_t = d$ (constant as *t* varies.)

9/32

Question: Do these results hold for families of non-isolated singularities?

• Σf_t : critical locus of f_t , $dim_0 \Sigma f_t = d$ (constant as *t* varies.)

•
$$\Gamma_f := \left\{ (z,t) \mid \frac{\partial f}{\partial z_i}(z,t) = 0, \ i = 1, \dots n \right\}$$
 Polar variety of f .

9/32

Question: Do these results hold for families of non-isolated singularities?

• Σf_t : critical locus of f_t , $dim_0 \Sigma f_t = d$ (constant as *t* varies.)

•
$$\Gamma_f := \left\{ (z,t) \mid \frac{\partial f}{\partial z_i}(z,t) = 0, \ i = 1, \dots n \right\}$$
 Polar variety of f .

f_t is λ_z-constant (or λ-constant with respect to the coordinates z = (z₁,..., z_n)) if for 0 ≤ i ≤ d and for all sufficiently small t, the i – th Lê number of f_t at 0 with respect to z, λⁱ_z(f_t)(0), is defined and independent of t.

Question: Do these results hold for families of non-isolated singularities?

• Σf_t : critical locus of f_t , $dim_0 \Sigma f_t = d$ (constant as *t* varies.)

•
$$\Gamma_f := \left\{ (z,t) \mid \frac{\partial f}{\partial z_i}(z,t) = 0, \ i = 1, \dots n \right\}$$
 Polar variety of f .

f_t is λ_z-constant (or λ-constant with respect to the coordinates z = (z₁,..., z_n)) if for 0 ≤ i ≤ d and for all sufficiently small t, the i – th Lê number of f_t at 0 with respect to z, λⁱ_z(f_t)(0), is defined and independent of t. When d = 0, λ⁰_z(f_t)(0) = μ(f_t).

ъ

Question: Do these results hold for families of non-isolated singularities?

• Σf_t : critical locus of f_t , $dim_0 \Sigma f_t = d$ (constant as *t* varies.)

•
$$\Gamma_f := \left\{ (z,t) \mid \frac{\partial f}{\partial z_i}(z,t) = 0, \ i = 1, \dots n \right\}$$
 Polar variety of f .

f_t is λ_z-constant (or λ-constant with respect to the coordinates z = (z₁,..., z_n)) if for 0 ≤ i ≤ d and for all sufficiently small t, the i – th Lê number of f_t at 0 with respect to z, λⁱ_z(f_t)(0), is defined and independent of t. When d = 0, λ⁰_z(f_t)(0) = μ(f_t).

ъ

 For non-isolated singularities is not true in general that topological V-constancy implies λ_z constant.

dim $\Sigma F_t = 1$, $\Sigma F_t = V(f, g_t)$. F_t topologically \mathcal{R} -trivial, $\lambda_z(F_t)$ not constant.

10/32

< ロ > < 同 > < 回 > < 回 > < 回 > <

 For non-isolated singularities is not true in general that topological V-constancy implies λ_z constant.

Example

(Fernández-Bobadilla,Gaffney (2008), Fernández-Bobadilla (2013)) Let $f, g_t : (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ defined by $f(x, y, z) = x^{15} + y^{10} + z^6, g_t(x, yz) = xy + tz,$ and $F_t := f^2 - g_t^{12} = (f - g_t^6)(f + g_t^6).$

イロト イポト イラト イラト

 For non-isolated singularities is not true in general that topological V-constancy implies λ_z constant.

Example

(Fernández-Bobadilla,Gaffney (2008), Fernández-Bobadilla (2013)) Let $f, g_t : (\mathbb{C}^3, 0) \rightarrow (\mathbb{C}, 0)$ defined by $f(x, y, z) = x^{15} + y^{10} + z^6, g_t(x, yz) = xy + tz,$ and $F_t := f^2 - g_t^{12} = (f - g_t^6)(f + g_t^6).$ dim $\Sigma F_t = 1, \ \Sigma F_t = V(f, g_t).$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

 For non-isolated singularities is not true in general that topological V-constancy implies λ_z constant.

Example

(Fernández-Bobadilla,Gaffney (2008), Fernández-Bobadilla (2013)) Let $f, g_t : (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ defined by $f(x, y, z) = x^{15} + y^{10} + z^6, g_t(x, yz) = xy + tz,$ and $F_t := f^2 - g_t^{12} = (f - g_t^6)(f + g_t^6).$ dim $\Sigma F_t = 1, \ \Sigma F_t = V(f, g_t).$ F_t topologically \mathcal{R} -trivial, $\lambda_z(F_t)$ not constant.

イロト イポト イラト イラト

λ_z constant $\Longrightarrow a_f$ -condition

λ_z constant $\Longrightarrow a_f$ -condition

Theorem (Massey, Theorem 6.5, LNM 1615)

If the family f_t is λ_z -constant, then $\{0\} \times D$ satisfies Thom's a_f condition at the origin with respect to the ambient stratum, that is, if p_k is a sequence of points in $(B \times D) \setminus \Sigma f$, such that $p_k \longrightarrow (0,0)$ and $T_{p_k} V_{f-f(p_k)} \longrightarrow T$, then $0 \times D \subset T$.

$\lambda_z \text{ constant} \Longrightarrow a_f \text{-condition}$

Theorem (Massey, Theorem 6.5, LNM 1615)

If the family f_t is λ_z -constant, then $\{0\} \times D$ satisfies Thom's a_f condition at the origin with respect to the ambient stratum, that is, if p_k is a sequence of points in $(B \times D) \setminus \Sigma f$, such that $p_k \longrightarrow (0,0)$ and $T_{p_k} V_{f-f(p_k)} \longrightarrow T$, then $0 \times D \subset T$.

Lemma (Eyral and R. (2015)) - Thom's inequalities

If $\{0\} \times D$ satisfies Thom's a_f condition at the origin with respect to the ambient stratum, then, for any holomorphic curve $\gamma : (\mathbb{C}, 0) \to (\mathbb{C}^n \times \mathbb{C}, 0)$, not contained in Γ_f , we have

$$\operatorname{ord}(\frac{\partial f}{\partial t}\circ\gamma) > \operatorname{inf}\{\operatorname{ord}(\frac{\partial f}{\partial z_i}\circ\gamma) \mid i=1,\ldots,n\}.$$

First Problem

Theorem A_{ni} : Eyral and R. (2015)

If the family $f(z,t) = f_0(z) + tg_1(z) + t^2g_2(z) + \ldots + t^rg_r(z) + \ldots$ is λ_z - constant at z = 0, and $m_0(f) = m$, then

$$m_0(g_1) \ge m, \ m_0(g_2) \ge m-1, \ \ldots, \ m_0(g_r) \ge m-r+1.$$

< ロ > < 同 > < 回 > < 回 >

First Problem

Theorem A_{ni}: Eyral and R. (2015)

If the family $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z) + \ldots + t^rg_r(z) + \ldots$ is λ_z - constant at z = 0, and $m_0(f) = m$, then

 $m_0(g_1) \ge m, \ m_0(g_2) \ge m-1, \ \ldots, \ m_0(g_r) \ge m-r+1.$

Theorem C_{ni}: (Eyral and R.(2015))

Let $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z)$ be a λ_z -constant family. If the singular set of the tangent cone of $\{f_0 = 0\}$ is not contained in the tangent cone of $\{g_2 = 0\}$, then the multiplicity $m_0(f_t)$ is constant.

(日)

Maria Aparecida Soares Ruas On the multiplicities of families of non-isol Se

æ

<ロ> <同> <同> <同> < 同> < 同>

Consider the partial derivatives:

$$\frac{\partial f}{\partial t} = \sum_{j \ge 1} jg_j(z)t^{j-1}, \quad \frac{\partial f}{\partial z_i} = \frac{\partial f_0}{\partial z_i} + \sum_{j \ge 1} \frac{\partial g_j}{\partial z_i}t^j$$

э

Consider the partial derivatives:

$$\frac{\partial f}{\partial t} = \sum_{j \ge 1} jg_j(z)t^{j-1}, \quad \frac{\partial f}{\partial z_i} = \frac{\partial f_0}{\partial z_i} + \sum_{j \ge 1} \frac{\partial g_j}{\partial z_i}t^j$$

Choose i_0 such that $\frac{\partial f}{\partial z_{i_0}} \neq 0$.

13/32

э

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Consider the partial derivatives:

$$\frac{\partial f}{\partial t} = \sum_{j \ge 1} jg_j(z)t^{j-1}, \quad \frac{\partial f}{\partial z_i} = \frac{\partial f_0}{\partial z_i} + \sum_{j \ge 1} \frac{\partial g_j}{\partial z_i}t^j$$

Choose i_0 such that $\frac{\partial f}{\partial z_{i_0}} \neq 0$. Pick a point $(z_0, t_0) \in (B \setminus \{0\}) \times (D \setminus \{0\})$ such that for all *s* small,

13/32

< D > < A > < B >

Consider the partial derivatives:

$$\frac{\partial f}{\partial t} = \sum_{j \ge 1} jg_j(z)t^{j-1}, \quad \frac{\partial f}{\partial z_i} = \frac{\partial f_0}{\partial z_i} + \sum_{j \ge 1} \frac{\partial g_j}{\partial z_i}t^j$$

Choose i_0 such that $\frac{\partial f}{\partial z_{i_0}} \neq 0$. Pick a point $(z_0, t_0) \in (B \setminus \{0\}) \times (D \setminus \{0\})$ such that for all *s* small,

$$\operatorname{in}(rac{\partial f}{\partial t}(sz_0,st_0)) \neq 0$$

< D > < A > < B >

Consider the partial derivatives:

$$\frac{\partial f}{\partial t} = \sum_{j \ge 1} jg_j(z)t^{j-1}, \quad \frac{\partial f}{\partial z_i} = \frac{\partial f_0}{\partial z_i} + \sum_{j \ge 1} \frac{\partial g_j}{\partial z_i}t^j$$

Choose i_0 such that $\frac{\partial f}{\partial z_{i_0}} \neq 0$. Pick a point $(z_0, t_0) \in (B \setminus \{0\}) \times (D \setminus \{0\})$ such that for all *s* small,

$$\operatorname{in}(\frac{\partial f}{\partial t}(sz_0, st_0)) \neq 0 \text{ and } \operatorname{in}(\frac{\partial f}{\partial z_{i_0}}(sz_0, st_0)) \neq 0$$

< D > < A > < B >

Consider the partial derivatives:

$$\frac{\partial f}{\partial t} = \sum_{j \ge 1} jg_j(z)t^{j-1}, \quad \frac{\partial f}{\partial z_i} = \frac{\partial f_0}{\partial z_i} + \sum_{j \ge 1} \frac{\partial g_j}{\partial z_i}t^j$$

Choose i_0 such that $\frac{\partial f}{\partial z_{i_0}} \neq 0$. Pick a point $(z_0, t_0) \in (B \setminus \{0\}) \times (D \setminus \{0\})$ such that for all *s* small,

$$\operatorname{in}(\frac{\partial f}{\partial t}(sz_0, st_0)) \neq 0 \text{ and } \operatorname{in}(\frac{\partial f}{\partial z_{i_0}}(sz_0, st_0)) \neq 0$$

Write $\gamma(s) = (\gamma_1(s), \gamma_2(s)) = (sz_0, st_0).$

Consider the partial derivatives:

$$\frac{\partial f}{\partial t} = \sum_{j \ge 1} jg_j(z)t^{j-1}, \quad \frac{\partial f}{\partial z_i} = \frac{\partial f_0}{\partial z_i} + \sum_{j \ge 1} \frac{\partial g_j}{\partial z_i}t^j$$

Choose i_0 such that $\frac{\partial f}{\partial z_{i_0}} \neq 0$. Pick a point $(z_0, t_0) \in (B \setminus \{0\}) \times (D \setminus \{0\})$ such that for all *s* small,

$$\operatorname{in}(\frac{\partial f}{\partial t}(sz_0, st_0)) \neq 0 \text{ and } \operatorname{in}(\frac{\partial f}{\partial z_{i_0}}(sz_0, st_0)) \neq 0$$

Write $\gamma(s) = (\gamma_1(s), \gamma_2(s)) = (sz_0, st_0)$. Then,

We have

$$\operatorname{ord}(\frac{\partial f}{\partial t} \circ \gamma) = \operatorname{ord}(\frac{\partial f}{\partial t}) = \operatorname{inf}(m_0(g_j) + j - 1)$$

While:

$$inf_i ord(\frac{\partial f}{\partial z_i} \circ \gamma) \geq inf_{i,j}\{m_0(f_0) - 1, m_0(g_j) + j - 1\}$$

14/32

æ

<ロ> <同> <同> <同> < 同> < 同>

We have

$$\operatorname{ord}(\frac{\partial f}{\partial t} \circ \gamma) = \operatorname{ord}(\frac{\partial f}{\partial t}) = \operatorname{inf}(m_0(g_j) + j - 1)$$

While:

$$inf_i ord(\frac{\partial f}{\partial z_i} \circ \gamma) \ge inf_{i,j}\{m_0(f_0) - 1, m_0(g_j) + j - 1\}$$

As $\operatorname{in}(\frac{\partial f}{\partial z_{i_0}} \circ \gamma) \neq 0$, the set $\gamma(\mathbb{C})$ is not contained in Γ_f , and it follows that $m-1 < j + m_0(g_j) - 1$ for every $j \ge 1$.

Maria Aparecida Soares Ruas

Unlike in the first proof, here we do have to assume that f_t is λ_z constant in order to apply Massey-Iomdine-Lê formula

Unlike in the first proof, here we do have to assume that f_t is λ_z constant in order to apply Massey-Iomdine-Lê formula (it is not sufficient to assume that f_t satisfies a_f condition.)

きょうきょう きょうきょう

15/32

Unlike in the first proof, here we do have to assume that f_t is λ_z constant in order to apply Massey-Iomdine-Lê formula (it is not sufficient to assume that f_t satisfies a_f condition.)

As λ_z is constant, for all sufficiently high integers $0 \ll N_1 \ll N_2 \ll \ldots \ll N_d$, $d = \dim \Sigma_{f_t}$, the functions

$$f_0 + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$$
 and $f_t + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$

have isolated singularities and the same Milnor number.

医二乙酰氨基酮 医胆管管 化

Unlike in the first proof, here we do have to assume that f_t is λ_z constant in order to apply Massey-Iomdine-Lê formula (it is not sufficient to assume that f_t satisfies a_f condition.)

As λ_z is constant, for all sufficiently high integers $0 \ll N_1 \ll N_2 \ll \ldots \ll N_d$, $d = \dim \Sigma_{f_i}$, the functions

$$f_0 + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$$
 and $f_t + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$

have isolated singularities and the same Milnor number. We now apply Theorem A and use the fact that N_i are sufficiently bigh.

出一 人姓氏沃尔尔 不管不不可不

Unlike in the first proof, here we do have to assume that f_t is λ_z constant in order to apply Massey-Iomdine-Lê formula (it is not sufficient to assume that f_t satisfies a_f condition.)

As λ_z is constant, for all sufficiently high integers $0 \ll N_1 \ll N_2 \ll \ldots \ll N_d$, $d = \dim \Sigma_{f_t}$, the functions

$$f_0 + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$$
 and $f_t + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$

have isolated singularities and the same Milnor number. We now apply Theorem A and use the fact that N_i are sufficiently bigh.

Corollary

If $f_t(z) = f_0(z) + tg(z)$ is a λ_z -constant family, then it is equimultiple.

医白发 医管外 医胆子 医胆子 医

Unlike in the first proof, here we do have to assume that f_t is λ_z constant in order to apply Massey-Iomdine-Lê formula (it is not sufficient to assume that f_t satisfies a_f condition.)

As λ_z is constant, for all sufficiently high integers $0 \ll N_1 \ll N_2 \ll \ldots \ll N_d$, $d = \dim \Sigma_{f_t}$, the functions

$$f_0 + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$$
 and $f_t + z_1^{N_1} + z_2^{N_2} + \ldots + z_d^{N_d}$

have isolated singularities and the same Milnor number. We now apply Theorem A and use the fact that N_i are sufficiently bigh.

Corollary

If $f_t(z) = f_0(z) + tg(z)$ is a λ_z -constant family, then it is equimultiple.

• Parusinski (1999), Plénat-Trotman (2013), Eyral-Ruas (2016)

15/32

• (Skecht of the first proof of Theorem C_{ni} :)

э

• (Skecht of the first proof of Theorem C_{ni} :)

Lemma

Suppose that $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z)$, with $g_2 \neq 0$ and $\sum in(f_0) \nsubseteq C(V(g_2))$ then $\sum in(f_0) \times \mathbb{C} \nsubseteq \Gamma_f$.

16/32

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

• (Skecht of the first proof of Theorem C_{ni} :)

Lemma

Suppose that $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z)$, with $g_2 \neq 0$ and $\sum in(f_0) \nsubseteq C(V(g_2))$ then $\sum in(f_0) \times \mathbb{C} \nsubseteq \Gamma_f$.

Observe that dim Σ in(f_0) ≥ 1 and by Theorem A_{ni} , $m_0(g_1) \ge m$ and $m_0(g_2) \ge m - 1$.

16/32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• (Skecht of the first proof of Theorem C_{ni} :)

Lemma

Suppose that $f(z, t) = f_0(z) + tg_1(z) + t^2g_2(z)$, with $g_2 \neq 0$ and $\sum in(f_0) \nsubseteq C(V(g_2))$ then $\sum in(f_0) \times \mathbb{C} \nsubseteq \Gamma_f$.

Observe that dim Σ in(f_0) ≥ 1 and by Theorem A_{ni} , $m_0(g_1) \ge m$ and $m_0(g_2) \ge m - 1$.

Suppose (by contradiction) that $m_0(g_2) = m - 1$.

By the previous lemma, there exists an index i_0 such that the restriction of $\frac{\partial f}{\partial z_{i_0}}$ to $\Sigma in(f_0) \times \mathbb{C}$ is $\neq 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So we can pick a point $(z_0, t_0) \neq (0, 0)$ in $\Sigma in(f_0)$ such that for all $s \neq 0$ sufficiently small,

$$\mathsf{in}\frac{\partial f}{\partial t}(sz_0, st_0) \neq 0, \quad \mathsf{in}g_2(sz_0, st_0) \neq 0, \quad \frac{\partial f}{\partial z_{i_0}}(sz_0, st_0) \neq 0$$

17/32

So we can pick a point $(z_0, t_0) \neq (0, 0)$ in $\Sigma in(t_0)$ such that for all $s \neq 0$ sufficiently small,

$$\mathsf{in}\frac{\partial f}{\partial t}(sz_0, st_0) \neq 0, \quad \mathsf{in}g_2(sz_0, st_0) \neq 0, \quad \frac{\partial f}{\partial z_{i_0}}(sz_0, st_0) \neq 0$$

Let $\gamma(s) = (sz_0, st_0)$, then we can check that the a_f condition fails along γ .

<ロ> <同> <同> < 同> < 同>

Second problem

In this second part, I discuss the extension of Theorem B (Greuel, 1986), (O'Shea, 1987) to the non-isolated case.

Also assume that for any $t \neq 0$ the polar curve $\Gamma_{f_t,z}^1$ is irreducible. Under these assumptions, if furthermore the families f_t and $f_{V(z_1)}$ are both topologically equisingular, then they are both equimultiple.

Second problem

In this second part, I discuss the extension of Theorem B (Greuel, 1986), (O'Shea, 1987) to the non-isolated case.

• C. Eyral, M.A.S.Ruas, 2019.

Theorem

Suppose that f_t is a family of line singularities such that f_0 is weighted homogeneous with respect to a system of positive integer weights (w_1, \ldots, w_n) satisfying the following conditions:

- (i) $w_1 = min\{w_1, ..., w_n\}$
- (ii) w₁ divides the weighted degree of f₀

18/32

Second problem

In this second part, I discuss the extension of Theorem B (Greuel, 1986), (O'Shea, 1987) to the non-isolated case.

• C. Eyral, M.A.S.Ruas, 2019.

Theorem

Suppose that f_t is a family of line singularities such that f_0 is weighted homogeneous with respect to a system of positive integer weights (w_1, \ldots, w_n) satisfying the following conditions:

- (i) $w_1 = min\{w_1, ..., w_n\}$
- (ii) w_1 divides the weighted degree of f_0

Also assume that for any $t \neq 0$ the polar curve $\Gamma_{f_t,z}^1$ is irreducible. Under these assumptions, if furthermore the families f_t and $f_{V(z_1)}$ are both topologically equisingular, then they are both equimultiple.

$$X = \Phi^{-1}(0) \subset (\mathbb{C}^3 \times \mathbb{C}, 0),$$

family of reduced hypersurfaces in $\mathbb{C}^3,$ defined by $\Phi:(\mathbb{C}^3\times\mathbb{C},0)\to(\mathbb{C},0).$

19/32

э

$$X = \Phi^{-1}(0) \subset (\mathbb{C}^3 \times \mathbb{C}, 0),$$

family of reduced hypersurfaces in $\mathbb{C}^3,$ defined by $\Phi:(\mathbb{C}^3\times\mathbb{C},0)\to(\mathbb{C},0).$

$$X_t = \phi_t^{-1}(0), \quad X_t \subset \mathbb{C}^3.$$

19/32

э

Maria Aparecida Soares Ruas On the multiplicities of families of non-isol September 29, 2021

$$X = \Phi^{-1}(0) \subset (\mathbb{C}^3 \times \mathbb{C}, 0),$$

family of reduced hypersurfaces in \mathbb{C}^3 , defined by $\Phi : (\mathbb{C}^3 \times \mathbb{C}, 0) \to (\mathbb{C}, 0).$

$$X_t = \phi_t^{-1}(0), \quad X_t \subset \mathbb{C}^3.$$

Suppose that *X* has a smooth normalisation.

19/32

э

$$X = \Phi^{-1}(0) \subset (\mathbb{C}^3 \times \mathbb{C}, 0),$$

family of reduced hypersurfaces in \mathbb{C}^3 , defined by $\Phi: (\mathbb{C}^3 \times \mathbb{C}, 0) \to (\mathbb{C}, 0).$

$$X_t = \phi_t^{-1}(0), \quad X_t \subset \mathbb{C}^3.$$

Suppose that *X* has a smooth normalisation.

Question: If X is topologically equisingular, does it follow that $m_0(X_t)$ is constant ?

19/32

ъ

20/32

イロト イポト イラト イラト

 $X = F(\mathbb{C}^2 \times \mathbb{C}),$

20/32

 $X = F(\mathbb{C}^2 \times \mathbb{C}), \ F: (\mathbb{C}^2 \times \mathbb{C}, 0) \to (\mathbb{C}^3 \times \mathbb{C}, 0),$

20/32

(日)

 $X = F(\mathbb{C}^2 \times \mathbb{C}), \ F: (\mathbb{C}^2 \times \mathbb{C}, 0) \to (\mathbb{C}^3 \times \mathbb{C}, 0), \ F(x, y, t) = (f_t(x, y), t).$

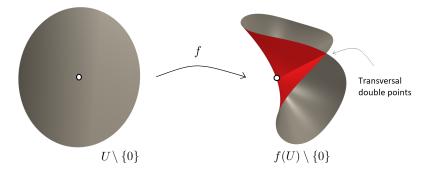
(日)

$$X = F(\mathbb{C}^2 \times \mathbb{C}), \quad F: (\mathbb{C}^2 \times \mathbb{C}, 0) \to (\mathbb{C}^3 \times \mathbb{C}, 0), \quad F(x, y, t) = (f_t(x, y), t).$$

We consider 1-parameter unfoldings *F* of *A*-finitely determined map-germs $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$.

20/32

(Mather-Gaffney geometric criterion) $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ is \mathcal{A} -finitely determined if and only if for all representative of f, there exists a neighborhood U of 0 in \mathbb{C}^2 such that

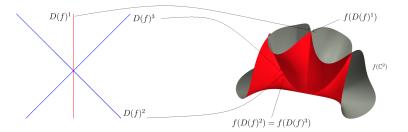


the singularities of $f(U) \setminus \{0\}$ are just transversal double points.

21/32

イロト イポト イラト イラト

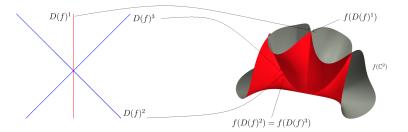
Example: $f(x, y) = (x, y^2, xy^3 - x^3y)$, the singularity C_3 of Mond's list



22/32

э

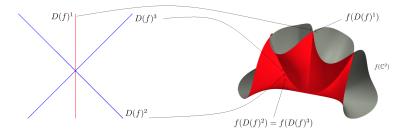
Example: $f(x, y) = (x, y^2, xy^3 - x^3y)$, the singularity C_3 of Mond's list



22/32

э

Example: $f(x, y) = (x, y^2, xy^3 - x^3y)$, the singularity C_3 of Mond's list



The double point curve is denoted by D(f).

22/32

ъ

$$D(f) := \left\{ (x, y) \in U \, : \, f^{-1}(f(x, y)) \neq \{ (x, y) \} \, \cup \, \Sigma(f)
ight\}$$

f is finitely determined $\Leftrightarrow D(f)$ is reduced.

$$D(f) := \left\{ (x, y) \in U \, : \, f^{-1}(f(x, y)) \neq \{ (x, y) \} \, \cup \, \Sigma(f)
ight\}$$

• We can give an analytic structure for D(f) such that:

f is finitely determined $\Leftrightarrow D(f)$ is reduced.

$$D(f) := \left\{ (x,y) \in U \, : \, f^{-1}(f(x,y)) \neq \{ (x,y) \} \, \cup \, \Sigma(f)
ight\}$$

• We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nuño-Ballesteros and Peñafort-Sanchis (2012)

Let $f:(\mathbb{C}^2,0)\to(\mathbb{C}^3,0)$ be a finite and generically 1-to-1 map germ. Then

$$D(f) := \left\{ (x,y) \in U \, : \, f^{-1}(f(x,y)) \neq \{ (x,y) \} \, \cup \, \Sigma(f)
ight\}$$

• We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nuño-Ballesteros and Peñafort-Sanchis (2012)

Let $f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finite and generically 1-to-1 map germ. Then

f is finitely determined \Leftrightarrow *D*(*f*) is reduced.

$$D(f) := \left\{ (x,y) \in U \, : \, f^{-1}(f(x,y)) \neq \{ (x,y) \} \, \cup \, \Sigma(f)
ight\}$$

• We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nuño-Ballesteros and Peñafort-Sanchis (2012)

Let $f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finite and generically 1-to-1 map germ. Then

f is finitely determined $\Leftrightarrow D(f)$ is reduced.

Since D(f) is reduced, we can consider its Milnor number, $\mu(D(f))$.

$$D(f) := \left\{ (x,y) \in U \, : \, f^{-1}(f(x,y)) \neq \{ (x,y) \} \, \cup \, \Sigma(f)
ight\}$$

• We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nuño-Ballesteros and Peñafort-Sanchis (2012)

Let $f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finite and generically 1-to-1 map germ. Then

f is finitely determined $\Leftrightarrow D(f)$ is reduced.

Since D(f) is reduced, we can consider its Milnor number, $\mu(D(f))$.

Definition:

F is a μ -constant unfolding if $\mu(D(f_t))$ is independent of *t*.

We say F is a A-topologically trivial if there are germs of homeomorphisms H and K such that

$$\begin{array}{c} (\mathbb{C}^2 \times \mathbb{C}, 0) \xrightarrow{F} (\mathbb{C}^3 \times \mathbb{C}, 0) \\ H & & \downarrow \kappa \\ (\mathbb{C}^2 \times \mathbb{C}, 0) \xrightarrow{f \times Id} (\mathbb{C}^3 \times \mathbb{C}, 0) \end{array}$$

where H and K are unfoldings of the identity.

24/32

Maria Aparecida Soares Ruas On the multiplicities of families of non-isol Septembe

38

くロ トス部 トメ 雨 トス ほう

Gaffney (Top. 1993)

Let *F* be a 1-parameter unfolding of a \mathcal{A} -finite map-germ $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$. If *F* is μ -constant, then *F* is excellent.

25/32

田 - 人田 - 人田 - 人間 - 人 - 日 - 人

Gaffney (Top. 1993)

Let *F* be a 1-parameter unfolding of a \mathcal{A} -finite map-germ $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$. If *F* is μ -constant, then *F* is excellent.

An excellent unfolding has a natural stratification whose strata in the complement of the parameter space T are the stable types in source and target.

25/32

田 - 人思々人思々 不能々人口々

Gaffney (Top. 1993)

Let *F* be a 1-parameter unfolding of a \mathcal{A} -finite map-germ $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$. If *F* is μ -constant, then *F* is excellent.

An excellent unfolding has a natural stratification whose strata in the complement of the parameter space T are the stable types in source and target.

The strata in the source are the following:

$$\{\mathbb{C}^2 \times \mathbb{C} \setminus D(F), \ D(F) \setminus T, \ T\}$$

In the target, the strata are

$$\{\mathbb{C}^3\times\mathbb{C}\setminus F(\mathbb{C}^2\times\mathbb{C}),\ F(\mathbb{C}^2\times\mathbb{C})\setminus\overline{F(D(F))},\ F(D(F))\setminus T,\ T\}.$$

田 - 人思々人思々 不能々人口々

Gaffney (Top. 1993)

Let *F* be a 1-parameter unfolding of a \mathcal{A} -finite map-germ $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$. If *F* is μ -constant, then *F* is excellent.

An excellent unfolding has a natural stratification whose strata in the complement of the parameter space T are the stable types in source and target.

The strata in the source are the following:

$$\{\mathbb{C}^2 \times \mathbb{C} \setminus D(F), D(F) \setminus T, T\}$$

In the target, the strata are

$$\{\mathbb{C}^3\times\mathbb{C}\setminus F(\mathbb{C}^2\times\mathbb{C}),\ F(\mathbb{C}^2\times\mathbb{C})\setminus\overline{F(D(F))},\ F(D(F))\setminus T,\ T\}.$$

Notice that F preserves the stratification, that is, F sends a stratum

Maria Aparecida Soares Ruas

On the multiplicities of families of non-isol

September 29, 2021

25/32

An unfolding F as above is *Whitney equisingular* if the above stratifications in source and target are Whitney equisingular along T.

- (b) F is topologically trivial
- (c) F is Whitney equisingular.
- Question: Does it follow that $(a) \iff (b) \iff (c)$? Answer: No.

26/32

An unfolding F as above is *Whitney equisingular* if the above stratifications in source and target are Whitney equisingular along T.

R. - (1994)
(a) *F* is μ- constant

26/32

An unfolding F as above is *Whitney equisingular* if the above stratifications in source and target are Whitney equisingular along T.

R. - (1994)

- (a) F is μ constant
- (b) F is topologically trivial

26/32

An unfolding F as above is *Whitney equisingular* if the above stratifications in source and target are Whitney equisingular along T.

R. - (1994)

- (a) F is μ constant
- (b) F is topologically trivial
- (c) F is Whitney equisingular.

26/32

< ロ > < 同 > < 回 > < 回 > < 回 > <

An unfolding F as above is *Whitney equisingular* if the above stratifications in source and target are Whitney equisingular along T.

R. - (1994)

- (a) F is μ constant
- (b) F is topologically trivial
- (c) F is Whitney equisingular.

Question: Does it follow that $(a) \iff (b) \iff (c)$?

3

An unfolding F as above is *Whitney equisingular* if the above stratifications in source and target are Whitney equisingular along T.

R. - (1994)

- (a) F is μ constant
- (b) F is topologically trivial
- (c) F is Whitney equisingular.

Question: Does it follow that $(a) \iff (b) \iff (c)$? Answer: No.

< ロ > < 同 > < 回 > < 回 > < 回 > <

F is topologically trivial $\Leftrightarrow \mu(D(f_t))$ is constant.

F is topologically trivial $\Leftrightarrow \mu(D(f_t))$ is constant.

Whitney equisingularity: Gaffney (1993); Marar, Nuño-Ballesteros and Peñafort-Sanchis (2012)

• Theorem: (Marar et al. (2012)) *F* is Whitney equisingular $\iff \mu(D(f_t))$, and $\mu_1(f_t(\mathbb{C}^2, 0))$ are independent of *t*.

27/32

< ロ > < 同 > < 回 > < 回 > < 回 > <

F is topologically trivial $\Leftrightarrow \mu(D(f_t))$ is constant.

Whitney equisingularity: Gaffney (1993); Marar, Nuño-Ballesteros and Peñafort-Sanchis (2012)

• Theorem: (Marar et al. (2012)) *F* is Whitney equisingular $\iff \mu(D(f_t))$, and $\mu_1(f_t(\mathbb{C}^2, 0))$ are independent of *t*.

$$\mu_1(f(\mathbb{C}^2)) := \mu(Y_0),$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

F is topologically trivial $\Leftrightarrow \mu(D(f_t))$ is constant.

Whitney equisingularity: Gaffney (1993); Marar, Nuño-Ballesteros and Peñafort-Sanchis (2012)

• Theorem: (Marar et al. (2012)) *F* is Whitney equisingular $\iff \mu(D(f_t))$, and $\mu_1(f_t(\mathbb{C}^2, 0))$ are independent of *t*.

$$\mu_1(f(\mathbb{C}^2)) := \mu(Y_0),$$

where $Y_0 := f(\mathbb{C}^2) \cap H$, and *H* is a generic plane in \mathbb{C}^3 , passing through the origin.

(日)

In 1994, there were few known classes of examples to test the problem.

72

▲日 ▶ ▲圖 ▶ ▲ 語 ≯ ▲ 田 ▶

In 1994, there were few known classes of examples to test the problem.

- Marar and Nuño-Ballesteros. A note on finite determinacy for corank 2 map germs from surfaces to 3-space, *Math. Proc. Cambr. Phil. Soc.*, (2008).
- Marar, Nuño-Ballesteros and Peñafort-Sanchis. Double point curves for corank 2 map germs from \mathbb{C}^2 to \mathbb{C}^3 . *Topology Appl.*, (2012).
- Marar and Nuño-Ballesteros. Slicing corank 1 map germs from \mathbb{C}^2 to \mathbb{C}^3 . *Quart. J. Math.*, (2014).
- Peñafort-Sanchis. Reflection Maps, Mathematische Annalen, (2020)

Among others?.

28/32

September 29, 2021

< • • • **•**

- H = V(aX + bY + cZ) generic hyperplane, $(Y_t, 0) = V(a(x^2 + txy) + b(x^2y + xy^2 + y^3) + c(x^5 + y^5))$
- $\mu(Y_0, 0) = 2$ and $\mu(Y_t, 0) = 1$ for $t \neq 0$, so $\mu_1(f_t(\mathbb{C}^2))$ not constant.
- $m_0(f_t(D(f_t))) = 22$ and $m_0(f_t(\mathbb{C}^2)) = 6$ for all *t*.

Example

$$f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0), \ f(x, y) = (x^2, \ x^2y + xy^2 + y^3, \ x^5 + y^5),$$
 and
 $f_t(x, y) = (x^2 + txy, \ x^2y + xy^2 + y^3, \ x^5 + y^5)$

• $\mu(D(f_t)) = 441$ for all *t*, then *F* is topologically trivial.

Example

$$f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0), \ f(x, y) = (x^2, \ x^2y + xy^2 + y^3, \ x^5 + y^5),$$
 and
 $f_t(x, y) = (x^2 + txy, \ x^2y + xy^2 + y^3, \ x^5 + y^5)$

• $\mu(D(f_t)) = 441$ for all *t*, then *F* is topologically trivial.

H = V(aX + bY + cZ) generic hyperplane, $(Y_t, 0) = V(a(x^2 + txy) + b(x^2y + xy^2 + y^3) + c(x^5 + y^5))$

Example

$$f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0), \ f(x, y) = (x^2, \ x^2y + xy^2 + y^3, \ x^5 + y^5),$$
 and
 $f_t(x, y) = (x^2 + txy, \ x^2y + xy^2 + y^3, \ x^5 + y^5)$

• $\mu(D(f_t)) = 441$ for all *t*, then *F* is topologically trivial.

H = V(aX + bY + cZ) generic hyperplane, $(Y_t, 0) = V(a(x^2 + txy) + b(x^2y + xy^2 + y^3) + c(x^5 + y^5))$

• $\mu(Y_0, 0) = 2$ and $\mu(Y_t, 0) = 1$ for $t \neq 0$, so $\mu_1(f_t(\mathbb{C}^2))$ not constant.

Example

$$f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0), \ f(x, y) = (x^2, \ x^2y + xy^2 + y^3, \ x^5 + y^5),$$
 and
 $f_t(x, y) = (x^2 + txy, \ x^2y + xy^2 + y^3, \ x^5 + y^5)$

• $\mu(D(f_t)) = 441$ for all *t*, then *F* is topologically trivial.

H = V(aX + bY + cZ) generic hyperplane, $(Y_t, 0) = V(a(x^2 + txy) + b(x^2y + xy^2 + y^3) + c(x^5 + y^5))$

• $\mu(Y_0, 0) = 2$ and $\mu(Y_t, 0) = 1$ for $t \neq 0$, so $\mu_1(f_t(\mathbb{C}^2))$ not constant.

•
$$m_0(f_t(D(f_t))) = 22$$
 and $m_0(f_t(\mathbb{C}^2)) = 6$ for all t .

Hence F is not Whitney equisingular.

<i>F</i> _t	μ		m_0	
(Corank 1 case)	$(\tilde{Y}_0,0)$	$(\tilde{Y}_t, 0)$	f(D(f))	$f_t(D(f_t))$
$(x, y^4, x^5y + xy^5 + y^6 + ty^7)$	0	0	9	8
$(x, y^6, x^{13}y + xy^{13} + y^{14} + ty^{15})$	0	0	35	33
(Corank 2 case)				
$(x^2 + txy, x^2y + xy^2 + y^3, x^5 + y^5)$	2	1	22	22
$(x^3, y^5, x^2 - xy + y^2 + tx^2)$	1	1	23	22
		۰ ۵	> ≺⊡> ≺ ≣	> < ≣ > = ≣

э

• Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finitely determined map germ.

- Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finitely determined map germ.
- *f* is quasihomogeneous and has corank 1.

- Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finitely determined map germ.
- f is quasihomogeneous and has corank 1.
- Write f in the form f(x, y) = (x, p(x, y), q(x, y)), set $d_2 = deg(p)$,
- $d_3 = deg(q)$ and suppose one of the following conditions:

イロト イポト イラト イラト

- Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finitely determined map germ.
- f is quasihomogeneous and has corank 1.
- Write *f* in the form f(x, y) = (x, p(x, y), q(x, y)), set $d_2 = deg(p)$, $d_3 = deg(q)$ and suppose one of the following conditions:
- (1) the weights of the variables are w(x) = 1 and $w(y) = b \ge 2$.

- Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finitely determined map germ.
- f is quasihomogeneous and has corank 1.
- Write *f* in the form *f*(*x*, *y*) = (*x*, *p*(*x*, *y*), *q*(*x*, *y*)), set *d*₂ = *deg*(*p*), *d*₃ = *deg*(*q*) and suppose one of the following conditions:
 (1) the weights of the variables are *w*(*x*) = 1 and *w*(*y*) = *b* ≥ 2.
 (2) the weights of the variables are *w*(*x*) = *w*(*y*) = 1 with *gcd*(*d*₂, *d*₃) ≠ 2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ be a finitely determined map germ.
- f is quasihomogeneous and has corank 1.
- Write *f* in the form *f*(*x*, *y*) = (*x*, *p*(*x*, *y*), *q*(*x*, *y*)), set *d*₂ = *deg*(*p*), *d*₃ = *deg*(*q*) and suppose one of the following conditions:
 (1) the weights of the variables are *w*(*x*) = 1 and *w*(*y*) = *b* ≥ 2.
 (2) the weights of the variables are *w*(*x*) = *w*(*y*) = 1 with *gcd*(*d*₂, *d*₃) ≠ 2.
- Let $F = (f_t, t)$ be an unfolding of f. Then

F is topologically trivial \Leftrightarrow *F* is Whitney equisingular $\Leftrightarrow \mu(D(f_t))$ is constant.

Congratulations, David!!

æ

<ロ> <同> <同> < 同> < 同>